- **56.** The model makes sense for x > 3; When factored completely, the volume is V = (x 1)(x 3)(3x 5). For all three dimensions of the cage to have positive lengths, the value of x must be greater than 3.
- **57.** $a^4(a+6)(a-5)$; A common monomial can be factored out to obtain a factorable trinomial in quadratic form.
- **58.** $(2m-7)(4m^2+14m+49)$; The difference of two cubes pattern can be used because the expression is of the form a^3-b^3 .
- **59.** (z-3)(z+3)(z-7); Factoring by grouping can be used because the expression contains pairs of monomials that have a common factor. Difference of two squares can be used to factor one of the resulting binomials.
- **60.** $2p^2(p^3-2)(p^3-4)$; A common monomial can be factored out to obtain a factorable trinomial in quadratic form where $u=p^3$.
- **61.** $(4r + 9)(16r^2 36r + 81)$; The sum of two cubes pattern can be used because the expression is of the form $a^3 + b^3$.
- **62.** $5x^3(x-4)(x+2)$; A common monomial can be factored out to obtain a factorable trinomial in quadratic form.
- **63.** $(4n^2 + 1)(2n 1)(2n + 1)$; The difference of two squares pattern can be used to factor the original expression and one of the resulting binomials.
- **64.** $(3k^2 + 1)(3k 8)$; Factoring by grouping can be used because the expression contains pairs of monomials that have a common factor.
- **65.** a. no; $7z^4(2z + 3)(z 2)$
 - **b.** no; n(2-n)(n+6)(3n-11)
 - c. yes
- **66.** 1 million
- **67.** 0.7 million